Fertilizer use with high prices and tight supplies

John Heard Eastern MB Agronomy Update Feb 2022

Improving the odds of success with high-priced fertilizer applications

John Heard

Soil Fertility Specialist

MB Agriculture & Resource Development

Dr. Don Flaten, University of Manitoba (retired)

Dr. Cynthia Grant, AAFC Brandon (retired)

https://mbcropalliance.ca/resources/4r-nutrient-stewardship-in-manitoba

Improving the Odds of Success: 4R Nutrient Stewardship ... More Important than Ever

- An approach used by industry, government, and farmers to achieve responsible nutrient use through:
 - Right Source
 - Right Rate
 - Right Time
 - Right Place

*EC - "Extra Careful" formulation

Soil moisture reserves are scarce in many regions ...

Drought conditions as of December 31, 2021

Residual soil nitrate-nitrogen following wheat

Trend from 1986 to 2021

Data not shown where n< 100 AGVISE Laboratories, Inc.

ial nitrate following wheat in 2

Nitrate-N, med (lb/acre, 0-24 i 100 80 60 40

Data not shown where n< 100 AGVISE Laboratories, Inc.

Some fields will require very little N fertilizer

	Residual nitrate-N distribution after wheat (lb/acre, 0-24 inch depth)										
Zip code area	Ave. Ib/acre	0-20	21-40	41-60	61-80	81-100	>100				
Manitoba											
R0A Southeastern	95	3%	9%	18%	19%	18%	33%				
R0E Eastern	84	3%	19%	23%	17%	11%	27%				
R0G South Central	87	1%	11%	22%	20%	16%	30%				
R0H South Interlake	102	1%	8%	14%	17%	16%	44%				
R0K Brandon	84	1%	16%	20%	20%	17%	25%				
R0L Western	68	4%	22%	26%	20%	12%	17%				

https://agviselaboratories.cmail20.com/t/ViewEmail/t/249EF1605C17D2E42540EF23F3 0FEDED/1268714A1EA4268914399806BE9B4083

Other Fertility Credits

- Manure
- 2. Forage legumes:
 - 90 lb N/ac less for low legume stands, less for delayed termination
- 3. Pulse crops
 - None for soybeans, 25 lb N/ac for peas (but tapping into the pulse yield bonus)
- 4. Green manure crops are not common
 - every 1000 lb of dry matter produced by a grain or forage legume, some
 15 lb N/ac is available next year.
- 5. Cover crops?
 - Reduced soil N and often yield drag
- 6. Soil OM credit?
 - No
 - mineralization is dependent upon knowledge of in-season moisture, and
 - immobilization = mineralization

2021 Drought and oat and canola volunteer/regrowth

1 ton/ac dry matter
Lb per acre = 80 N, 15 P2O5, 85 K2O
\$70/ac at current N&P cost.

1.9 – 2.6 ton/ac Ave Lb per acre = 160 N, 30 P2O5, 130 K2O, 40 S \$135/ac at current N&P cost.

Uptake and release of nutrients from wild oats

Wild oat age (weeks)	Stage	C:N ratio	Uptake of N lb N/ac	Uptake of P lb P2O5/ac	% N recovery by wheat	% P recovery by wheat
1	3L	15;1	8	1.8	6	85
2	4L, 1T	13:1	12	2.3	5	33
3	4L, 2T	19:1	23	5	2	6
4	5L, 2T	14:1	45	9	2	6
5	6L, H	20:1	53	16	0.5	5
6	7L, F	21:1	78	20	0.6	4
7	Flower	32:1	76	25	0.4	2
8	Milk	36:1	108	23	0.2	1
9	Dough	58:1	40	12	-0.3	-0.5
10	Mature	79:1	28	11	-0.2	1.5

Will fall N tests decline?

- If sampled early and:
- Fall regrowth
- On sandy soil that received rain. Nitrate can be leached lower in profile (but probably not out of rooting zone)
- On poorly drained clay soils, where soils are saturated we can gas off by denitrification some 2-4 lb N/ac/day
- Consider limited spring sampling

Nitrogen needs differ based on moisture

Dry = Reduced yield potential but more N needed

- Reduced N efficiency
- Less mineralization
- Less mass flow to roots

Consider these response curves

Economic optimum rates of fertilizer change with prices for fertilizer and crops ... e.g., Manitoba N Rate Calculator for spring wheat, barley and canola

Fertilizer & crop price scenarios for "MB N Calculator" for wheat and canola based on Westco field trials and 30 lb residual soil test N

Spring Whoat Sconarios			Wheat	Optimum	Crop	Net	Return
Spring Wheat Scenarios	Ure	ea Price	Price	N Rate	Yield	t	o N
	\$/	Tonne	\$/bu	lb N/ac	bu/ac	\$	/ac
2021 Crop Year MF MC - moist	\$	450	\$ 7.50	115	64	\$	145
2022 Crop Year HF HC - moist	\$	1,000	\$ 10.00	100	63	\$	151
2022 Crop Year HF MC - moist	\$	1,000	\$ 7.50	90	62	\$	90
2022 Crop Year HF MC - arid	\$	1,000	\$ 7.50	25	31	\$	16

Canola Scenarios			Canola	Optimum	Crop	Net	Return
	Ure	ea Price	Price	N Rate	Yield	t	o N
	\$/Tonne		\$/bu	lb N/ac	bu/ac	\$	/ac
2021 Crop Year MF MC - moist	\$	450	\$ 11.00	140	51	\$	395
2022 Crop Year HF HC - moist	\$	1,000	\$ 18.00	140	51	\$	194
2022 Crop Year HF MC - moist	\$	1,000	\$ 11.00	115	49	\$	69

Agronomy and N rate

- Rotation
- Seeding dates
- Variety selection
- Weed control –
 esp early control
 and N

Probability of cereal crop response to fertilizer P drops below 50% at Olsen soil test P levels greater than ~ 15 ppm

Manitoba P Response Probabilities for Cereals and Hay Crops

Available P (ppm Olsen)		Number of Experiments	% Responding to Fertilizer P				
0-5 V. Low 5-12 Low-Med 12-18 Med-High		15	100				
		50	62				
		16	56				
>18 High-VH		14	29				
Overa	all	95	63				

Hedlin, U of M, 1962

In addition to being more frequent, crop yield response is also larger on low P soil

Six year study in SK by Wagar et al. 1986

P Rate can be Managed for Short-Term Sufficiency or Long-term Sustainability

- Short-term sufficiency
- Rate chosen based on economic yield response in the year of application
 - Often seed-place a low rate of P ... max benefit, min risk
 - Rate is usually less than crop removal ... except for low yields
- Suitable for short-term land tenure and when P costs are high relative to crop prices

Short-term P sufficiency strategy often depletes longterm P fertility, especially for seedrow placed P

eg. MB Soil Fertility Guide recommendations for 10 ppm Olsen P

FERT	I IZER P	HOSPHA	TF (PO)	RECOMME	NDFD	(lb/ac)										
Soil Phosphorus (sodium bicarbonate or Olsen P test)		Cereal	Corn Sunflower	Corn Car		074070107	Buckwheat Fababeans		Potatoes		Lentils beans [†] eans [†]	Legume forages		Perennial grass forages		
ppm	lb/ac	Rating	S¹	Sb ²	B3	S1	B ³	51	B3	PPI ⁴	B ³	51	seeding PPI ⁵	Est. stand BT ⁶	seeding PPI ⁵	Est. stand BT ⁶
0	0	VL	40	40	40	20	40	20	55	110	40	20	75	55	45	30
	5	VL	40	40	40	20	40	20	55	110	40	20	75	55	45	30
5	10	L	40	40	40	20	40	20	50	100	40	15	75	55	45	30
	15	L	35	35	35	20	35	20	45	90	35	15	65	50	35	20
10	20	M	30	30	30	20	30	20	45	90	30	10	60	40	30	20
	25	M	20	20	20	20	20	20	40	80	20	10	50	35	20	15
15	30	Н	15	15	15	0	15	20	35	70	15	0	45	30	15	10
	35	Н	10	10	10	0	10	20	30	60	10	0	30	20	0	0
20	40	VH	10	10	10	0	10	20	30	60	10	0	30	20	0	0
20+	40+	VH+	10	10	10	0	10	20	30	60	10	0	25	20	0	0

P Rate can be Managed for Short-Term Sufficiency or Long-term Sustainability

- Short-term sufficiency
- Rate chosen based on economic yield response in the year of application
 - Often seed-place a low rate of P ... max benefit, min risk
 - Rate is usually less than crop removal ... except for low yields
- Suitable for short-term land tenure and when P costs are high relative to crop prices

Long-term sustainability

- Aim applications to reach and maintain soil test P target range:
 - Build on low-P soils
 - Deplete on high-P soils
- Long-term economics considers residual P value
- Suitable for long-term land tenure and when P costs are low relative to crop prices

Additional factors to consider for P rates:

- P fertilizer response varies with crop species and hybrid/variety ... eg. greater response for cereals and canola than for flax or soybean
- Bottom line: if fertilizer cost is high and soil test P is medium to high (10-20 ppm Olsen soil test P), band modest rates of "starter P" in or near the seedrow (e.g., 15-25 lbs P₂O₅ or 30-50 lbs 11-52-0 per acre) to cereals and canola ... with no P applied to soybean or flax

Sulphur, Potassium, and Micronutrients

- These nutrients are just as "essential" as N and P, but responses to fertilizer are much less frequent.
- Apply according to soil test analyses and Provincial guidelines, eg:
- for S, "insurance application" of S fertilizer is recommended for variable soils where high value, Sdemanding crops such as canola are grown ... use sulphate-S to supply S quickly
- - for K, apply K if soil test <200 ppm for corn & potatoes and if soil test is <100-125 ppm for other crops
- for micros, see Appendix Table 20 in MB SFG

Many factors affect the balance of nutrient supply and demand ... How do you make sure your rates are OK?

Soil test every field/mgmt zone, every year, to:

- Predict fertilizer and/or manure requirements for next year's crop, based on existing reserves in soil
- 2. Evaluate/audit your nutrient management planning for last year's crop ... e.g., look for signs of more N mineralization than expected
- 3. Monitor for upward or downward trends in soil fertility and soil health ... e.g., decreasing soil test P or increasing salinity

Fine-Tuning <u>Nutrient Management</u> in Tumultuous Times: 4R Nutrient Stewardship ... More Important than Ever

- Well-proven principles and practices encouraged by industry and government ... and used by farmers to achieve responsible nutrient use through:
- Right Rate

- Right Source
- Right Time
- Right Place

Placement and Timing for N Fertilizer

- <u>Placement</u> ... banding is generally more efficient than broadcasting:
- banding reduces:
 - volatilization
 - immobilization
 - NH₄+ fixation
 - nitrification-leaching-denitrification
 - runoff losses
- banding also avoids "surface stranding" and improves positional availability to the crop

Recent 4R Studies – Source, Placement, Timing by Tharf

Several years of evaluation of varied placement x source x timing treatments. These studies indexed to sidebanded urea at seeding in yield in order to compare yields.

https://iharf.ca/wp-content/uploads/2021/02/2020-IHARF-Agronomy-Research-Update-1-Chris-Holzapfel.pdf

Wheat response to Nitrogen Placement, Timing Source. Holzapfel 2017-2020

Midseason Applications of N

- Splitting application of N between seeding and midseason can maintain or increase yield and protein content if:
- the crop has sufficient N for early season growth and
- rains are timely for moving N into the soil

(Mangin et al. 2016-2017)

Midseason Applications of N

- Splitting application of N between seeding and midseason can maintain or increase yield and protein content if:
- the crop has sufficient N for early season growth and
- rains are timely for moving N into the soil

Making the most from your fertilizer investment during tumultuous times

- High prices for fertilizer and crops have increased the <u>risks</u> from overor under-fertilizing ... or applying nutrients inefficiently
- High prices for fertilizer and crops have increased the <u>rewards</u> from precise application of fertilizer

Making the most from your fertilizer investment during tumultuous times

- For 2022 in particular:
 - Use soil tests to help select crops for fields
 - Depending on soil N & moisture reserves, band modest rates of N away from the seed
 - For cereals & canola, band starter rates of P in or near the seedrow, especially if soil test P is low
 - Follow Provincial recommendations for K, S, and micronutrients
 - If moisture conditions, markets (including protein premiums/discounts), and weather forecast are favourable, consider adding supplemental N (with a urease inhibitor) during the growing season

Questions

John.Heard@gov.mb.ca

